ACCURATE DENSE STEREO MATCHING FOR ROAD SCENES

Affiliation auteurs!!!! Error affiliation !!!!
TitreACCURATE DENSE STEREO MATCHING FOR ROAD SCENES
Type de publicationConference Paper
Year of Publication2017
AuteursZeglazi O, Rziza M, Amine A, Demonceaux C
Conference Name2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP)
PublisherInst Elect & Elect Engineers; Inst Elect & Elect Engineers Signal Proc Soc
Conference Location345 E 47TH ST, NEW YORK, NY 10017 USA
ISBN Number978-1-5090-2175-8
Mots-clésCensus Transform, Cross based aggregation, Cross Comparison Census, Stereo vision
Résumé

Stereo matching task is the core of applications linked to the intelligent vehicles. In this paper, we present a new variant function of the Census Transform (CT) which is more robust against radiometric changes in real road scenes. We demonstrate that the proposed cost function outperforms the conventional cost functions using the KITTI benchmark(1). The cost aggregation method is also updated for taking into account the edge information. This enables to improve significantly the aggregated costs especially within homogenous regions. The Winner-Takes-All (WTA) strategy is used to compute disparity values. To further eliminate the remainder matching ambiguities, a post-processing step is performed. Experiments were conducted on the new Middlebury(2) dataset, as well as on the real road traffic scenes of the KITTI database. Obtained disparity results have demonstrated that the proposed method is promising.