Coherent surface plasmon amplification through the dissipative instability of 2D direct current
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Coherent surface plasmon amplification through the dissipative instability of 2D direct current |
Type de publication | Journal Article |
Year of Publication | 2019 |
Auteurs | , Bouhelier A, |
Journal | NANOPHOTONICS |
Volume | 8 |
Pagination | 135-143 |
Date Published | JAN |
Type of Article | Article |
ISSN | 2192-8606 |
Mots-clés | dissipative instability of DC current, electrical excitation of nanoantenna, self-consistent 2D plasma oscillation |
Résumé | We propose an original concept for on-chip excitation and amplification of surface plasmon polaritons. Our approach, named nanoresotron, utilizes the collective effect of dissipative instability of a 2D direct current flowing in vicinity of a metal surface. The instability arises through the excitation of self-consistent plasma oscillations and results in the creation of a pair of collective surface electromagnetic modes in addition to conventional plasmon resonances. We derive the dispersion equations for these modes using self-consistent solutions of Maxwell's and 2D hydrodynamics equations. We find that the phase velocities of these new collective modes are close to the drift velocity of 2D electrons. We demonstrate that the slow mode is amplified while the fast mode exhibits absorption. Estimates indicate that very high gain are attainable, which makes the nanoresotron a promising scheme to electrically excite and regenerate surface plasmon polaritons. |
DOI | 10.1515/nanoph-2018-0090 |