Disturbance and recovery in high speed (110) cleavage in single crystalline silicon

Affiliation auteurs!!!! Error affiliation !!!!
TitreDisturbance and recovery in high speed (110) cleavage in single crystalline silicon
Type de publicationJournal Article
Year of Publication2018
AuteursZhao L, Wang M, Maynadier A, Nelias D
JournalJOURNAL OF THE EUROPEAN CERAMIC SOCIETY
Volume38
Pagination1038-1045
Date PublishedAPR
Type of ArticleArticle
ISSN0955-2219
Mots-clésCrack deflection, Fracture, High speed propagation, Silicon single crystal
Résumé

Stress perturbations and material defects can significantly affect the fracture initiation and propagation behaviors in brittle materials. In this work, we show that (110)[110] cleavage in silicon deflects onto (111) plane in the presence of contact stresses. The deflection is however not permanent as the crack returns to the (110) plane after a certain length of propagation, even in the case where the crack velocity is up to 78% of the Rayleigh wave speed. The recovery behavior indicates that the (110) [110] cleavage is invariably prevailing when perpendicular to the maximum stress. Following this indication, it can be concluded that the observed (110)[110]-(111) deflection in previous literature is more likely driven by the external disturbance rather than the crack velocity induced toughness evolution. We also highlight that the extra energy for the (110) recovery is minimized at the expense of a large propagation distance upon the plane switch.

DOI10.1016/j.jeurceramsoc.2017.12.035