The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

Affiliation auteurs!!!! Error affiliation !!!!
TitreThe TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17
Type de publicationJournal Article
Year of Publication2018
AuteursLiu T, Kim K-T, Juvela M, Wang K, Tatematsu K'ichi, Di Francesco J, Liu S-Y, Wu Y, Thompson M, Fuller G et al.
JournalASTROPHYSICAL JOURNAL SUPPLEMENT SERIES
Volume234
Pagination28
Date PublishedFEB
Type of ArticleArticle
ISSN0067-0049
Mots-clésISM: abundances, ISM: clouds, ISM: kinematics and dynamics, stars: formation, Surveys
Résumé

The low dust temperatures (< 14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. ``TOP-SCOPE'' is a joint survey program targeting similar to 2000 PGCCs in J = 1-0 transitions of CO isotopologues and similar to 1000 PGCCs in 850 mu m continuum emission. The objective of the ``TOP-SCOPE'' survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are similar to 6200 M-circle dot, similar to 12 pc, and similar to 500 M-circle dot pc(-1), respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (beta) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.

DOI10.3847/1538-4365/aaa3dd