ASYMPTOTIC AND COARSE LIPSCHITZ STRUCTURES OF QUASI-REFLEXIVE BANACH SPACES

Affiliation auteurs!!!! Error affiliation !!!!
TitreASYMPTOTIC AND COARSE LIPSCHITZ STRUCTURES OF QUASI-REFLEXIVE BANACH SPACES
Type de publicationJournal Article
Year of Publication2018
AuteursLancien G., Raja M.
JournalHOUSTON JOURNAL OF MATHEMATICS
Volume44
Pagination927-940
Type of ArticleArticle
ISSN0362-1588
Mots-clésasymptotic structure of Banach spaces, coarse Lipschitz embeddings, quasi-reflexive Banach spaces
Résumé

In this note, we extend to the setting of quasi-reflexive spaces a classical result of N. Kalton and L. Randrianarivony on the coarse Lipschitz structure of reflexive and asymptotically uniformly smooth Banach spaces. As an application, we show for instance, that for 1 <= q < p, a q-asymptotically uniformly convex Banach space does not coarse Lipschitz embed into a p-asymptotically uniformly smooth quasi-reflexive Banach space. This extends a recent result of B.M. Braga.