Surfaces of minimal degree of tame representation type and mutations of Cohen-Macaulay modules

Affiliation auteursAffiliation ok
TitreSurfaces of minimal degree of tame representation type and mutations of Cohen-Macaulay modules
Type de publicationJournal Article
Year of Publication2017
AuteursFaenzi D, Malaspina F
JournalADVANCES IN MATHEMATICS
Volume310
Pagination663-695
Date PublishedAPR 13
Type of ArticleArticle
ISSN0001-8708
Mots-clésACM bundles, MCM modules, Tame CM type, Ulrich bundles, Varieties of minimal degree
Résumé

We provide two examples of smooth projective surfaces of tame CM type, by showing that the parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in IP5 is either a single point or a projective line. These turn out to be the only smooth projective ACM varieties of tame CM type besides elliptic curves, [1]. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For IF0 and IF1, embedded as quintic or sextic scrolls, a complete classification of rigid ACM bundles is given. (C) 2017 Elsevier Inc. All rights reserved.

DOI10.1016/j.aim.2017.02.007