Optimization of material parameter identification in biomechanics

Affiliation auteurs!!!! Error affiliation !!!!
TitreOptimization of material parameter identification in biomechanics
Type de publicationJournal Article
Year of Publication2014
AuteursHarb N., Labed N., Domaszewski M., Peyraut F.
JournalSTRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION
Volume49
Pagination337-349
Date PublishedFEB
Type of ArticleArticle
ISSN1615-147X
Mots-clésBiomechanics, genetic algorithm, Optimization, Parameter identification
Résumé

The aim of this paper is to present an original and efficient approach for indentifying material parameter in biomechanics. A new method named GAO (Genetic algorithms & Analytical Optimization) addresses the parameter identification problem that is formulated as a non-linear least-squares problem. To evaluate GAO technique, the identification problem of 7 material parameters of a specific biomechanical law is approached by multiple algorithms (genetic algorithms and gradient-based methods). This comparative demonstrates the rapidity and the efficiency of GAO method in parameter estimation. It also explains the behaviour of genetic algorithms, their efficient operators, and the advantages that GAO method brings to genetics algorithms leading to successful parameter identification.

DOI10.1007/s00158-013-0973-y