Optimization of material parameter identification in biomechanics
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Optimization of material parameter identification in biomechanics |
Type de publication | Journal Article |
Year of Publication | 2014 |
Auteurs | Harb N., Labed N., Domaszewski M., Peyraut F. |
Journal | STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION |
Volume | 49 |
Pagination | 337-349 |
Date Published | FEB |
Type of Article | Article |
ISSN | 1615-147X |
Mots-clés | Biomechanics, genetic algorithm, Optimization, Parameter identification |
Résumé | The aim of this paper is to present an original and efficient approach for indentifying material parameter in biomechanics. A new method named GAO (Genetic algorithms & Analytical Optimization) addresses the parameter identification problem that is formulated as a non-linear least-squares problem. To evaluate GAO technique, the identification problem of 7 material parameters of a specific biomechanical law is approached by multiple algorithms (genetic algorithms and gradient-based methods). This comparative demonstrates the rapidity and the efficiency of GAO method in parameter estimation. It also explains the behaviour of genetic algorithms, their efficient operators, and the advantages that GAO method brings to genetics algorithms leading to successful parameter identification. |
DOI | 10.1007/s00158-013-0973-y |