Hom-Lie quadratic and Pinczon Algebras
Affiliation auteurs | !!!! Error affiliation !!!! |
Titre | Hom-Lie quadratic and Pinczon Algebras |
Type de publication | Journal Article |
Year of Publication | 2017 |
Auteurs | Arnal D, Bakbrahem W, Chatbouri R |
Journal | COMMUNICATIONS IN ALGEBRA |
Volume | 45 |
Pagination | 5471-5486 |
Type of Article | Article |
ISSN | 0092-7872 |
Mots-clés | 17A45, 17B56, 17D99, 55N20, Cohomology, hom-Lie algebras, quadratic algebras, up to homotopy algebras |
Résumé | Presenting the structure equation of a hom-Lie algebra ?, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on ?, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module. |
DOI | 10.1080/00927872.2017.1327058 |