Hom-Lie quadratic and Pinczon Algebras

Affiliation auteurs!!!! Error affiliation !!!!
TitreHom-Lie quadratic and Pinczon Algebras
Type de publicationJournal Article
Year of Publication2017
AuteursArnal D, Bakbrahem W, Chatbouri R
JournalCOMMUNICATIONS IN ALGEBRA
Volume45
Pagination5471-5486
Type of ArticleArticle
ISSN0092-7872
Mots-clés17A45, 17B56, 17D99, 55N20, Cohomology, hom-Lie algebras, quadratic algebras, up to homotopy algebras
Résumé

Presenting the structure equation of a hom-Lie algebra ?, as the vanishing of the self commutator of a coderivation of some associative comultiplication, we define up to homotopy hom-Lie algebras, which yields the general hom-Lie algebra cohomology with value in a module. If the hom-Lie algebra is quadratic, using the Pinczon bracket on skew symmetric multilinear forms on ?, we express this theory in the space of forms. If the hom-Lie algebra is symmetric, it is possible to associate to each module a quadratic hom-Lie algebra and describe the cohomology with value in the module.

DOI10.1080/00927872.2017.1327058