Integrability, Quantization and Moduli Spaces of Curves
Affiliation auteurs | Affiliation ok |
Titre | Integrability, Quantization and Moduli Spaces of Curves |
Type de publication | Journal Article |
Year of Publication | 2017 |
Auteurs | Rossi P |
Journal | SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS |
Volume | 13 |
Pagination | 060 |
Type of Article | Article |
ISSN | 1815-0659 |
Mots-clés | cohomological field theories, double ramification cycle, double ramification hierarchy, integrable systems, moduli space of stable curves |
Résumé | This paper has the purpose of presenting in an organic way a new approach to integrable (1 + 1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guere. |
DOI | 10.3842/SIGMA.2017.060 |