Three-qutrit entanglement and simple singularities

Affiliation auteursAffiliation ok
TitreThree-qutrit entanglement and simple singularities
Type de publicationJournal Article
Year of Publication2016
AuteursHolweck F, Jaffali H
JournalJOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
Volume49
Pagination1-11
Date PublishedNOV 18
Type of ArticleArticle
ISSN1751-8113
Mots-clésentanglement, Singularity theory, three qutrit system
Résumé

In this paper, we use singularity theory to study the entanglement nature of pure three-qutrit systems. We first consider the algebraic variety X of separable three-qutrit states within the projective Hilbert space P(H) = P-26. Given a quantum pure state vertical bar phi > is an element of P(H) we define the X-phi-hypersuface by cutting X with a hyperplane H-phi defined by the linear form ranges over the stochastic local operation and classical communication entanglement classes, the `worst' possible singular X-phi-hypersuface with isolated singularities, has a unique singular point of type D-4.

DOI10.1088/1751-8113/49/46/465301